Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1283120, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901217

RESUMO

Introduction: Nirsevimab is an extended half-life (M252Y/S254T/T256E [YTE]-modified) monoclonal antibody to the pre-fusion conformation of the respiratory syncytial virus (RSV) Fusion protein, with established efficacy in preventing RSV-associated lower respiratory tract infection in infants for the duration of a typical RSV season. Previous studies suggest that nirsevimab confers protection via direct virus neutralization. Here we use preclinical models to explore whether fragment crystallizable (Fc)-mediated effector functions contribute to nirsevimab-mediated protection. Methods: Nirsevimab, MEDI8897* (i.e., nirsevimab without the YTE modification), and MEDI8897*-TM (i.e., MEDI8897* without Fc effector functions) binding to Fc γ receptors (FcγRs) was evaluated using surface plasmon resonance. Antibody-dependent neutrophil phagocytosis (ADNP), antibody-dependent cellular phagocytosis (ADCP), antibody-dependent complement deposition (ADCD), and antibody-dependent cellular cytotoxicity (ADCC) were assessed through in vitro and ex vivo serological analyses. A cotton rat challenge study was performed with MEDI8897* and MEDI8897*-TM to explore whether Fc effector functions contribute to protection from RSV. Results: Nirsevimab and MEDI8897* exhibited binding to a range of FcγRs, with expected reductions in FcγR binding affinities observed for MEDI8897*-TM. Nirsevimab exhibited in vitro ADNP, ADCP, ADCD, and ADCC activity above background levels, and similar ADNP, ADCP, and ADCD activity to palivizumab. Nirsevimab administration increased ex vivo ADNP, ADCP, and ADCD activity in participant serum from the MELODY study (NCT03979313). However, ADCC levels remained similar between nirsevimab and placebo. MEDI8897* and MEDI8897*-TM exhibited similar dose-dependent reduction in lung and nasal turbinate RSV titers in the cotton rat model. Conclusion: Nirsevimab possesses Fc effector activity comparable with the current standard of care, palivizumab. However, despite possessing the capacity for Fc effector activity, data from RSV challenge experiments illustrate that nirsevimab-mediated protection is primarily dependent on direct virus neutralization.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Lactente , Humanos , Animais , Palivizumab/uso terapêutico , Anticorpos Antivirais , Proteínas do Sistema Complemento/uso terapêutico , Sigmodontinae
2.
MAbs ; 15(1): 2152526, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36476037

RESUMO

To combat the COVID-19 pandemic, potential therapies have been developed and moved into clinical trials at an unprecedented pace. Some of the most promising therapies are neutralizing antibodies against SARS-CoV-2. In order to maximize the therapeutic effectiveness of such neutralizing antibodies, Fc engineering to modulate effector functions and to extend half-life is desirable. However, it is critical that Fc engineering does not negatively impact the developability properties of the antibodies, as these properties play a key role in ensuring rapid development, successful manufacturing, and improved overall chances of clinical success. In this study, we describe the biophysical characterization of a panel of Fc engineered ("TM-YTE") SARS-CoV-2 neutralizing antibodies, the same Fc modifications as those found in AstraZeneca's Evusheld (AZD7442; tixagevimab and cilgavimab), in which the TM modification (L234F/L235E/P331S) reduce binding to FcγR and C1q and the YTE modification (M252Y/S254T/T256E) extends serum half-life. We have previously shown that combining both the TM and YTE Fc modifications can reduce the thermal stability of the CH2 domain and possibly lead to developability challenges. Here we show, using a diverse panel of TM-YTE SARS-CoV-2 neutralizing antibodies, that despite lowering the thermal stability of the Fc CH2 domain, the TM-YTE platform does not have any inherent developability liabilities and shows an in vivo pharmacokinetic profile in human FcRn transgenic mice similar to the well-characterized YTE platform. The TM-YTE is therefore a developable, effector function reduced, half-life extended antibody platform.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Camundongos , Humanos , SARS-CoV-2/genética , Pandemias , Anticorpos Neutralizantes
3.
Sci Adv ; 7(49): eabl8213, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34851659

RESUMO

Vaccines derived from chimpanzee adenovirus Y25 (ChAdOx1), human adenovirus type 26 (HAdV-D26), and human adenovirus type 5 (HAdV-C5) are critical in combatting the severe acute respiratory coronavirus 2 (SARS-CoV-2) pandemic. As part of the largest vaccination campaign in history, ultrarare side effects not seen in phase 3 trials, including thrombosis with thrombocytopenia syndrome (TTS), a rare condition resembling heparin-induced thrombocytopenia (HIT), have been observed. This study demonstrates that all three adenoviruses deployed as vaccination vectors versus SARS-CoV-2 bind to platelet factor 4 (PF4), a protein implicated in the pathogenesis of HIT. We have determined the structure of the ChAdOx1 viral vector and used it in state-of-the-art computational simulations to demonstrate an electrostatic interaction mechanism with PF4, which was confirmed experimentally by surface plasmon resonance. These data confirm that PF4 is capable of forming stable complexes with clinically relevant adenoviruses, an important step in unraveling the mechanisms underlying TTS.

4.
MAbs ; 13(1): 1857100, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33397194

RESUMO

Preclinical studies of PD-L1 and CTLA-4 blockade have relied heavily on mouse syngeneic tumor models with intact immune systems, which facilitate dissection of immunosuppressive mechanisms in the tumor microenvironment. Commercially developed monoclonal antibodies (mAbs) targeting human PD-L1, PD-1, and CTLA-4 may not demonstrate cross-reactive binding to their mouse orthologs, and surrogate anti-mouse antibodies are often used in their place to inhibit these immune checkpoints. In each case, multiple choices exist for surrogate antibodies, which differ with respect to species of origin, affinity, and effector function. To develop relevant murine surrogate antibodies for the anti-human PD-L1 mAb durvalumab and the anti-human CTLA-4 mAb tremelimumab, rat/mouse chimeric or fully murine mAbs engineered for reduced effector function were developed and compared with durvalumab and tremelimumab. Characterization included determination of target affinity, in vivo effector function, pharmacokinetic profile, and anti-tumor efficacy in mouse syngeneic tumor models. Results showed that anti-PD-L1 and anti-CTLA-4 murine surrogates with pharmacologic properties similar to those of durvalumab and tremelimumab demonstrated anti-tumor activity in a subset of commonly used mouse syngeneic tumor models. This activity was not entirely dependent on antibody-dependent cellular cytotoxicity, antibody-dependent cellular phagocytosis effector function, or regulatory T-cell depletion, as antibodies engineered to lack these features showed activity in models historically sensitive to checkpoint inhibition, albeit at a significantly lower level than antibodies with intact effector function.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Neoplasias Experimentais/tratamento farmacológico , Linfócitos T Reguladores/efeitos dos fármacos , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais Humanizados/imunologia , Antineoplásicos Imunológicos/imunologia , Antineoplásicos Imunológicos/uso terapêutico , Antígeno B7-H1/imunologia , Antígeno CTLA-4/imunologia , Linhagem Celular Tumoral , Feminino , Humanos , Estimativa de Kaplan-Meier , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/patologia , Ratos Sprague-Dawley , Linfócitos T Reguladores/imunologia , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/imunologia
6.
Protein Expr Purif ; 167: 105528, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31689498

RESUMO

Interferon-alpha receptor 1 (IFNAR1) is a target of interest for recombinant biotherapeutics that block the JAK/STAT pathway. This pathway is believed to play a role in many diseases including Hepatitis B and C, Herpes Simplex, Multiple Sclerosis, and other autoimmune disorders. By using IFNAR1 as a target to block Type I IFN from binding to the JAK/STAT pathway and prevent activation of this target, autoimmune disease progression can be modulated. Current IFNAR1 extracellular domain (ECD) expression and purification protocols are labor intensive with low product yield and limited scalability. In this work, we evaluate three different expression systems (baculovirus, human embryonic kidney 293 (HEK293×), and Chinese hamster ovary (CHO)) to improve expression of IFNAR1 ECD. We demonstrate the benefits of utilizing mammalian CHO cell transient transfection to increase expression titer, as well as an improved two-step purification process performed using immobilized metal affinity chromatography (IMAC) as the capture step and Ceramic Hydroxyapatite (CHT) Type II for HMW impurity removal in flow through mode. This process showed an 20-fold increase in productivity compared to the baseline process as measured by grams purified per liter of cell culture fluid. Lastly, the improved process showed good scalability, enabling efficient purification of 3.6 g of product from a 30 L scale bioreactor.


Assuntos
Doenças Autoimunes/tratamento farmacológico , Receptor de Interferon alfa e beta , Animais , Baculoviridae , Técnicas de Cultura Celular por Lotes , Reatores Biológicos , Células CHO , Clonagem Molecular/métodos , Cricetulus , Desenvolvimento de Medicamentos/métodos , Células HEK293 , Humanos , Receptor de Interferon alfa e beta/biossíntese , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/isolamento & purificação , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
7.
J Immunol Methods ; 474: 112666, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31525363

RESUMO

Identity testing of biopharmaceutical products is conducted at multiple steps in the manufacturing process, for drug product lot release, and often for product importation. Because of the chemical and structural similarities of antibody-based products, they present a unique challenge for the development of a QC friendly identity assay where specificity is the critical attribute. Here we report on the development of a novel, rapid and highly specific assay designed to simplify identity testing of antibody-based biopharmaceutical products. A lateral flow immunoassay platform (LFIA) was optimized and used to develop seven identity-specific tests against therapeutic monoclonal antibodies. The specificity of each assay was verified against 10-40 antibody products. An average linear range of antibody detection from 50 to 10,000 ng/ml was observed, allowing minimal sample dilution to be performed. The optimized LFIA platform consistently produced a strong visual signal and showed no false positive results. Three of the seven LFIA-based identity assays have been successfully validated for product release, in accordance with ICH validation guidelines. Additional tests will be validated as products reach the commercial phase. We demonstrate that a lateral flow-based identity assay is an ideal analytical tool for identity testing of antibody therapeutics. The assay platform can easily be adapted for new antibody products and it can be quickly transferred and validated for product testing.


Assuntos
Anticorpos Monoclonais/análise , Produtos Biológicos/análise , Imunoensaio , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Fatores de Tempo , Fluxo de Trabalho
8.
Biotechnol Prog ; 33(1): 140-145, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27798957

RESUMO

Recombinant therapeutic monoclonal antibodies (mAbs) must be purified from host cell proteins (HCPs), DNA, and other impurities present in Chinese hamster ovary (CHO) cell culture media. HCPs can potentially result in adverse clinical responses in patients and, in specific cases, have caused degradation of the final mAb product. As reported previously, residual traces of cathepsin D caused particle formation in the final product of mAb-1. The current work was focused on identification of a primary sequence in mAb-1 responsible for the binding and consequent co-purification of trace levels of CHO cathepsin D. Surface plasmon resonance (SPR) was used to detect binding between immobilized CHO cathepsin D and a panel of mAbs. Out of 13 mAbs tested, only mAb-1 and mAb-6 bound to cathepsin D. An LYY motif in the HC CDR2 was common, yet unique, to only these two mAbs. Mutation of LYY to AAA eliminated binding of mAb-1 to cathepsin D providing confirmation that this sequence motif was involved in the binding to CHO cathepsin D. Interestingly, the binding between mAb-1 and cathepsin D was weaker than that of mAb-6, which may be related to the fact that two aspartic acid residues near the LYY motif in mAb-1 are replaced with neutral serine residues in mAb-6. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:140-145, 2017.


Assuntos
Anticorpos Monoclonais/isolamento & purificação , Catepsina D/isolamento & purificação , Meios de Cultura/química , Imunoglobulina G/isolamento & purificação , Proteínas Recombinantes/isolamento & purificação , Animais , Anticorpos Monoclonais/química , Células CHO , Catepsina D/química , Catepsina D/genética , Cricetulus , Proteínas Imobilizadas/química , Imunoglobulina G/química , Imunoglobulina G/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
9.
MAbs ; 5(3): 406-17, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23567207

RESUMO

Antibodies have become the fastest growing class of biological therapeutics, in part due to their exquisite specificity and ability to modulate protein-protein interactions with a high biological potency. The relatively large size and bivalency of antibodies, however, limits their use as therapeutics in certain circumstances. Antibody fragments, such as single-chain variable fragments and antigen binding-fragments, have emerged as viable alternatives, but without further modifications these monovalent formats have reduced terminal serum half-lives because of their small size and lack of an Fc domain, which is required for FcRn-mediated recycling. Using rational engineering of the IgG4 Fc domain to disrupt key interactions at the CH3-CH3 interface, we identified a number of point mutations that abolish Fc dimerization and created half-antibodies, a novel monovalent antibody format that retains a monomeric Fc domain. Introduction of these mutations into an IgG1 framework also led to the creation of half-antibodies. These half-antibodies were shown to be soluble, thermodynamically stable and monomeric, characteristics that are favorable for use as therapeutic proteins. Despite significantly reduced FcRn binding in vitro, which suggests that avidity gains in a dimeric Fc are critical to optimal FcRn binding, this format demonstrated an increased terminal serum half-life compared with that expected for most alternative antibody fragments.


Assuntos
Antígenos de Histocompatibilidade Classe I/genética , Imunoglobulina G/genética , Mutação/genética , Receptores Fc/genética , Proteínas Recombinantes de Fusão/genética , Anticorpos de Cadeia Única/genética , Animais , Meia-Vida , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Imunoglobulina G/administração & dosagem , Imunoglobulina G/química , Camundongos , Camundongos Endogâmicos BALB C , Ligação Proteica/efeitos dos fármacos , Engenharia de Proteínas , Estabilidade Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína/efeitos dos fármacos , Estrutura Terciária de Proteína/genética , Receptores Fc/química , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/química , Anticorpos de Cadeia Única/administração & dosagem , Anticorpos de Cadeia Única/química
10.
BMC Struct Biol ; 7: 72, 2007 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-17986339

RESUMO

BACKGROUND: Ricin is a potent toxin and known bioterrorism threat with no available antidote. The ricin A-chain (RTA) acts enzymatically to cleave a specific adenine base from ribosomal RNA, thereby blocking translation. To understand better the relationship between ligand binding and RTA active site conformational change, we used a fragment-based approach to find a minimal set of bonding interactions able to induce rearrangements in critical side-chain positions. RESULTS: We found that the smallest ligand stabilizing an open conformer of the RTA active site pocket was an amide group, bound weakly by only a few hydrogen bonds to the protein. Complexes with small amide-containing molecules also revealed a switch in geometry from a parallel towards a splayed arrangement of an arginine-tryptophan cation-pi interaction that was associated with an increase and red-shift in tryptophan fluorescence upon ligand binding. Using the observed fluorescence signal, we determined the thermodynamic changes of adenine binding to the RTA active site, as well as the site-specific binding of urea. Urea binding had a favorable enthalpy change and unfavorable entropy change, with a DeltaH of -13 +/- 2 kJ/mol and a DeltaS of -0.04 +/- 0.01 kJ/(K*mol). The side-chain position of residue Tyr80 in a complex with adenine was found not to involve as large an overlap of rings with the purine as previously considered, suggesting a smaller role for aromatic stacking at the RTA active site. CONCLUSION: We found that amide ligands can bind weakly but specifically to the ricin active site, producing significant shifts in positions of the critical active site residues Arg180 and Tyr80. These results indicate that fragment-based drug discovery methods are capable of identifying minimal bonding determinants of active-site side-chain rearrangements and the mechanistic origins of spectroscopic shifts. Our results suggest that tryptophan fluorescence provides a sensitive probe for the geometric relationship of arginine-tryptophan pairs, which often have significant roles in protein function. Using the unusual characteristics of the RTA system, we measured the still controversial thermodynamic changes of site-specific urea binding to a protein, results that are relevant to understanding the physical mechanisms of protein denaturation.


Assuntos
Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Ricina/química , Ricina/metabolismo , Sítios de Ligação , Dicroísmo Circular , Cristalografia por Raios X , Ligantes , Modelos Moleculares , Ligação Proteica , Estrutura Terciária de Proteína , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...